The origin of Himalayan anatexis and inverted metamorphism: Models and constraints
نویسندگان
چکیده
The key to comprehending the tectonic evolution of the Himalaya is to understand the relationships between large-scale faulting, anatexis, and inverted metamorphism. The great number and variety of mechanisms that have been proposed to explain some or all of these features re ̄ects the fact that fundamental constraints on such models have been slow in coming. Recent developments, most notably in geophysical imaging and geochronology, have been key to coalescing the results of varied Himalayan investigations into constraints with which to test proposed evolutionary models. These models fall into four general types: (1) the inverted metamorphic sequences within the footwall of the Himalayan thrust and adjacent hanging wall anatexis are spatially and temporally related by thrusting; (2) thrusting results from anatexis; (3) anatexis results from normal faulting; and (4) apparent inverted metamorphism in the footwall of the Himalayan thrust is produced by underplating of right-way-up metamorphic sequences. We review a number of models and ®nd that many are inconsistent with available constraints, most notably the recognition that the exposed crustal melts and inverted metamorphic sequences not temporally related. The generalization that appears to best explain the observed distribution of crustal melts and inverted metamorphic sequences is that, due to speci®c petrological and tectonic controls, episodic magmatism and out-of-sequence thrusting developed during continuous convergence juxtaposing allochthonous igneous and metamorphic rocks. This coincidental juxtaposition has proven to be something of a red herring, unduly in ̄uencing attention toward ®nding a causal relationship between anatexis and inverted metamorphism. # 1999 Elsevier Science Ltd. All rights reserved.
منابع مشابه
A Late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism
Perhaps the best known occurrence of an inverted metamorphic sequence is that found immediately beneath the Himalayan Main Central Thrust (MCT), generally thought to have been active during the Early Miocene. However, in situ 208Pb/ 232Th dating of monazite inclusions in garnet indicates that peak metamorphic recrystallization of the MCT footwall occurred in this portion of the central Himalaya...
متن کاملGenetic Issues of Some of the Non Metallic Minerals in Lesser Himalaya
A brief account of the representative and workable industrial minerals namely magnesite, talc and barite in Lesser Himalaya, is presented here emphasizing their genesis. Deposits of magnesite and talc are found associated with Neoproterozoic, plateform type, shelf-slope limestone-dolomite host rocks from inner Lesser Himalayan sequences. Field, textural, geochemical signatures and fluid inclusi...
متن کاملMetamorphism and exhumation of the NW Himalaya constrained by U–Th–Pb analyses of detrital monazite grains from early foreland basin sediments
Single detrital monazite grains from the Dharamsala and Lower Siwalik Formations (early to mid-Miocene continental foreland basin sediments in NW India) have been dated by two techniques; isotope dilution thermal ionization multicollector mass spectrometry (ID-TIMS) and laser ablation plasma ionization multicollector mass spectrometry (LA-PIMMS). The results give U–Th–Pb isotopic ages of c. 400...
متن کاملLateral extrusion, underplating, and out-of-sequence thrusting within the Himalayan metamorphic core, Kanchenjunga, Nepal
Integrated pseudosection modeling and monazite petrochronology of paragneiss from the Kanchenjunga region of northeastern Nepal reveal the presence of cryptic tectonometamorphic discontinuities within the Himalayan metamorphic core. These new data outline a series of thrust-sense structures that juxtapose rocks that generally record a protracted history of early Eocene to latest Oligocene–early...
متن کاملTiming of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications
We present geochronological evidence in the eastern Himalayan syntaxis (Namche Barwa) for high-pressure (HP) granulite-facies metamorphism and explain its importance for understanding both the deep continental subduction of the Indian plate beneath Asia and its subsequent exhumation. The timing of peak and retrograde metamorphism in part constrains these processes but is debated. We present zir...
متن کامل